Integral Points in Arithmetic Progression on y2=x(x2−n2)
نویسندگان
چکیده
منابع مشابه
Integral Points on Generic Fibers
Let P (x, y) be a rational polynomial. If the curve (P (x, y) = k), k ∈ Q, is irreducible and admits an infinite number of points whose coordinates are integers, Siegel’s theorem implies that the curve is rational. We deal with the case where k is a generic value and prove, in the spirit of the Abhyankar-MohSuzuki theorem, that there exists an algebraic automorphism sending P (x, y) to the poly...
متن کاملIntegral Points on Hyperelliptic Curves
Let C : Y 2 = anX + · · · + a0 be a hyperelliptic curve with the ai rational integers, n ≥ 5, and the polynomial on the right irreducible. Let J be its Jacobian. We give a completely explicit upper bound for the integral points on the model C, provided we know at least one rational point on C and a Mordell–Weil basis for J(Q). We also explain a powerful refinement of the Mordell–Weil sieve whic...
متن کاملIntegral Points on Cubic Hypersurfaces
Let g ∈ Z[x1, . . . , xn] be an absolutely irreducible cubic polynomial whose homogeneous part is non-degenerate. The primary goal of this paper is to investigate the set of integer solutions to the equation g = 0. Specifically, we shall try to determine conditions on g under which we can show that there are infinitely many solutions. An obvious necessary condition for the existence of integer ...
متن کاملOn 4 Squares in Arithmetic Progression
x1 − 2x2 + x3 = 0 x2 − 2x3 + x4 = 0 are given by (x1, x2, x3, x4) = (±1,±1,±1,±1). Now, the above variety is an intersection between 2 quadrics in P. In general – i.e., except for the possibility of the variety being reducible or singular – an intersection between 2 quadrics in P is (isomorphic to) an elliptic curve and there is an algorithm that brings the curve to Weierstraß form by means of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2000
ISSN: 0022-314X
DOI: 10.1006/jnth.1999.2430